#### 1. 概要

格子量子色力学(格子 QCD)の数値シミュレーションにおいてもっとも計算コストを要す るのは、フェルミオン行列の逆を計算する部分である。モンテカルロ・シミュレーション の中で通常使われる分子動力学に似た発展方程式を解く際にも、時間刻みの各ステップで フェルミオン行列の逆を計算する必要があり、非常に計算コストが大きい。このため、格 子 QCD 計算の高速化において、逆行列計算の改善はもっとも重点が置かれる部分になって いる。例えば、最もよく使われるウィルソン型のフェルミオン行列の場合、最も標準的な 共役勾配法(Conjugate Gradient (CG))よりも BiCGStab 法(詳細は以下を参照)のほうが 高速であることが知られており、広く使われている。一方、スタッガード型やドメインウ オール型、オーバーラップ型などのフェルミオン行列では、未だに CG 法が最も高速で、 他の反復解法では解けない場合も多い。本報告書では、これらのうち、ウィルソン型の派 生型であるクローバー型(clover)および、ドメインウォール型(dw)、オーバーラップ型の 5 次元実装版(ov5d)について、さまざまな反復解法による収束性を系統的に評価した結果を報 告する。

#### 1. 反復解法

格子 QCD におけるフェルミオン行列 A は通常エルミート性のない一般の複素行列である。 このため、反復解法としては非エルミート行列向けのものを使うか、A\*A の形にしてエル ミート行列向けのものを使う可能性がある。可能なら A のまま解く方が条件数を抑えると いう意味で有利と考えられるが、実際には行列の詳細によるので自明ではない。

本評価では、CGS 法、CGNE 法、BiCGSTAB 法、GMRES 法を適用する。さらに CGNE 法において A\*A を顕に計算する CGNE(A\*A)法,および CGNR 法についても評価する。ま た、BiCGSTAB 法、GMRES 法については 6 種類の前処理行列を適用して収束特性を評価 する。以下に、本測定で使用した反復解法,前処理法、およびそれ以外の手法について参 考文献をあげる。

| 短縮名      | 手法                                  | 評価 | 文献             |
|----------|-------------------------------------|----|----------------|
|          |                                     | 対象 |                |
| CGS 法    | Conjugate Gradient Squared          | 0  | 文献 1 P21 2.3.7 |
| CGNE 法   | Conjugate Gradient Normal Equations | 0  | 文献 1 P16 2.3.3 |
| CGNR 法   | Conjugate Gradient Normal Residual  |    |                |
| BiCGSTAB | Bi-Conjugate Gradient STABilized    | 0  | 文献 1 P24 2.3.8 |
| 法        |                                     |    |                |

反復解法:

| GMRES 法  | Generalized Minimal RESidual            | 0 | 文献 1 P17 2.3.4 |
|----------|-----------------------------------------|---|----------------|
| FGMRES 法 | Flexible Inner-outer Preconditioned     | × | 文献 11          |
|          | GMRES                                   |   |                |
| BiCG 法   | Bi-Conjugate Gradient                   | × | 文献 1 P19 2.3.5 |
| CR 法     | Conjugate Residual                      | × | 文献6 P203 6.8   |
| BiCR 法   | Bi-Conjugate Residual                   | × | 文献 7           |
| GPBiCG 法 | Generalized Product-type Methods Besed  | × | 文献 8           |
|          | on Bi-CG                                |   |                |
| COCG 法   | Conjugate Orthogonal Conjugate Gradient | × | 文献 9           |
| COCR 法   | Conjugate A-Orthogonal Conjugate        | × | 文献 10          |
|          | Residual                                |   |                |
| IDR 法    | Induced Dimension Reduction             | × | 文献 12          |
| IDR(s)法  |                                         |   |                |

前処理法:

| 短縮名                     | 手法                                   | 文献           |
|-------------------------|--------------------------------------|--------------|
| Jacobi                  | Diagonal scaling                     | 文献 1 P37 3.2 |
| $\mathrm{SSOR}(\Omega)$ | Symmetric Successive-Over-Relaxation | 文献 1 P37 3.3 |
| D-ILU                   | Incomplete LU diagonal               | 文献 1 P40 3.3 |
| ILU(0)                  | Incomplete LU with fill-in level '0' | 文献 1 P65 4.3 |
| ILU(1)                  | Incomplete LU with fill-in level '1' | 文献 1 P65 4.3 |
| ILUT(p,t)               | Incomplete LU threshold              | 文献 2         |

• 文献1: Richard Barrett, Michael Berry, Tony F. Chan, James Demmel, June M. Donato, Jack Dongarra, Victor Eijkhout, Roldan Pozo, Charles Romine, Henk van der Vorst: "Templates for the Solution of Linear Systems:Building Blocks for Iterative Methods": http://www.siam.org/books.

• 文献 2 : Y. Saad, "ILUT: A DUAL THRESHOLD INCOMPLETE LU FACTORIZATION" : Numerical Linear Algebra With Applications - NUMER LINEAR ALGEBR APPL, vol. 1, no. 4, pp. 387-402, 1994.

• 文献 3 : J. A. George and J. W-H. Liu, "Computer Solution of Large Sparse Positive Definite Systems", Prentice-Hall, 1981.

• 文献 4: P. Amestoy, T. A. Davis, and I. S. Duff, "An approximate minimum degree ordering algorithm", SIAM Journal on Matrix Analysis and Applications, vol 17, no. 4, pp. 886-905, Dec. 1996.

• 文献 5: A. George. "Nested dissection of a regular finite-element mesh", SIAM J. Numerical Analysis, 10:345–363, 1973.

• 文献 6: Yousef Saad. "Iterative Methods for Sparse Linear Systems Second Edition", SIAM J. Numerical Analysis, 10:345–363, 1973.

• 文献7 : Sogabe, T., Sugihara, M. and Zhang, S.-L., "An extension of the conjugate residual method to nonsymmetric linear systems", An extension of the conjugate residual method to nonsymmetric linear systems, Vol. 226, pp.103-113, 2009.

• 文献 8 : S.-L. Zhang, "GPBi-CG: Generalized Product-type Methods Besed on Bi-CG for Solving Nonsymmetric Linear Systems", SIAM J. Sci. Comput., 18(1997), pp. 537-551.

• 文献 9 : H. A. van der Vorst, J. B. M. Melissen, "A Petrov-Galerkin type Method for Solving Ax=b, Where A is Symmetric Complex", IEEE Transaction on Magnetics, VOL. 26, NO. 2, (1990), pp. 706-708.

•文献 10: Tomohiro Sogabe, "A COCR method for solving complex symmetric linear systems", J of Comp. and Applied Math. VOL. 199 (2007) 297-303

• 文献 11 : Saad, Y.," A Flexible Inner-outer Preconditioned GMRES Algorithm", SIAM J. Sci. Stat. Comput., **14** (1993), 461-469.

• 文献 12: P. Sonneveld," IDR(s): a family of simple and fast algorithms for solving large nonsymmetric systems of linear equations", SIAM J. SCI. COMPUT., Vol.31, No.2, pp.1035-1062, 2008.

## 2. 行列データの特性

本測定で使用する行列の基本特性をまずまとめる。格子データは4<sup>3</sup>x8の非常に小さな格 子であり、本評価のために生成したものである。通常はフェルミオン行列をかけるルーチ ンとして実装されるが、本評価では一旦行列全体を標準的な形式で書き出し、そのもとで 様々なツールを適用することを試みた。

下記の表は、非ゼロ成分の位置や対角成分の優位性などの外的特性を示すものである。N は行列の次元、NZ は非ゼロ要素の数、BAND(MEAN.MAX.MIN)はそれぞれ,帯幅の(平 均,最大値,最小値)を示す。

| matrix statistics |        |         | NZ/N <sup>2</sup> | BAND   | BAND   | BAND   | not diag. | diagonal    |
|-------------------|--------|---------|-------------------|--------|--------|--------|-----------|-------------|
|                   |        | INZ/IN  | (%)               | (MEAN) | (MAX)  | (MIN)  | dominant  | dominant(%) |
| 1                 | clover | 51.0    | 0.008             | 1,607  | 5,954  | 776    | 6,144     | 0.0         |
| 2                 | dw     | 44.0    | 0.002             | 10,166 | 23,810 | 6,150  | 24,576    | 0.0         |
| 3                 | ov5d   | 1,997.9 | 0.145             | 13,660 | 13,823 | 13,442 | 12,288    | 0.1         |

# ※ Diagonal dominant

$$\left| \boldsymbol{A}_{ii} \right| \geq \sum_{i \neq i} \left| \boldsymbol{A}_{ij} \right|$$

次に固有値分布を含む内的特性を示す。特に条件数(cond(A))については評価対象行列3 本ともに10未満と小さいことから、特性の良い解きやすい行列に属すると推察される。

| Matrix | N                             |            | 1) may   | lalmin   | $cond(\Lambda)$ | <sup>*1</sup> G半径 | CPU time    |  |
|--------|-------------------------------|------------|----------|----------|-----------------|-------------------|-------------|--|
| Macin  |                               | NZ         | / IIIdx  | 1711111  | COND(A)         | λ upper           | (SR16K XM1) |  |
| clover | N = 6,144 1.7243 0.2074 7.208 |            | 1 276    | 554coc   |                 |                   |             |  |
| clover | NZ=                           | 313,344    | +0.2389i | +0.1171i | 7.500           | 4.270             | JJ458C      |  |
| dw     | N =                           | 24,576     | 7.4937   | -0.5171  | 0 460           | 17 214            | 34 857500   |  |
| uw     | NZ=                           | 1,081,344  | +0.4504i | +0.6020i | 7.400           | 17.514            | 54,057580   |  |
| ov5d   | N =                           | 13,824     | 1.5037   | 0.5268   | 2 721           | 14 201            | 5 178500    |  |
|        | NZ=2                          | 27,618,406 | +0.0198i | +0.1672i | 2.721           | 14.201            | J, 1705EC   |  |

※1:Gerschgorin 半径:

また、CGNE 法で使用される A\*A をあらわに計算した時の非ゼロ要素数とその成分値の 特性を示す。行列 dw では、A\*A の結果、全成分の 36% がゼロに近いという特徴がある。

|        | _  |       | a <sub>ij</sub> ≠0 | a <sub>ij</sub> <10E-6 | a <sub>ij</sub> <10E-8 | a <sub>ij</sub> <10E-10 | a <sub>ij</sub> <10E-12 | a <sub>ij</sub> <10E-14 |
|--------|----|-------|--------------------|------------------------|------------------------|-------------------------|-------------------------|-------------------------|
|        | А  |       | 313,344            | 2,956                  | 84                     | 16                      | 0                       | 0                       |
| clover | A′ | `*A   | 1,806,336          | 112,314                | 110,594                | 110,592                 | 110,592                 | 110,592                 |
|        |    | 割合(%) | 100                | 6                      | 6                      | 6                       | 6                       | 6                       |
|        | Α  |       | 1,081,344          | 256                    | 0                      | 0                       | 0                       | 0                       |
| dw     | A′ | `*A   | 9,560,064          | 3,434,912              | 3,434,496              | 3,434,496               | 3,434,496               | 3,434,496               |
|        |    | 割合(%) | 100                | 36                     | 36                     | 36                      | 36                      | 36                      |
|        | Α  |       | 27,618,406         | 20,335,330             | 8,476,082              | 2,045,182               | 1,038,004               | 993,720                 |
| ov5d   | A′ | \*A   | 135,489,024        | 27,169,532             | 545,768                | 5,854                   | 66                      | 2                       |
|        |    | 割合(%) | 100                | 20                     | 0                      | 0                       | 0                       | 0                       |

以下では、各行列の固有値分布を複素平面上で示す。行列 clover は全固有値の実部が正である一方,dw および ov5d は実部が負の固有値が存在する。



# 3. 反復解法のアルゴリズム

以下に BiCGSTAB 法,GMRES 法,CGS 法,CGNE 法,CGNE(A\*A)法,CGNR 法のアルゴリ ズムを示す。

(1) 
$$x_0 = initial guess, r_0 = b - Ax_0, \rho_0 = \langle r_0, r_0 \rangle, p_0 = r_0$$
  
(2)  $k = 0,1,2, \cdots do$   
(3)  $v_k = Ap_k$   
(4)  $\gamma_k = \langle r_0, v_k \rangle$   
(5)  $\alpha_k = \rho_0 / \gamma_k$   
(6)  $s_k = r_k - \alpha_k v_k$   
(7)  $t_k = As_k$   
(8)  $\zeta_k = \langle t_k, s_k \rangle / \langle t_k, t_k \rangle$   
(9)  $x_{k+1} = x_k + \alpha_k p_k + \zeta_k s_k$   
(10)  $r_{k+1} = s_k - \zeta_k t_k$   
(11) check conv.? if  $||r_{k+1}||$  small enough exit  
(12)  $\rho_N = \langle r_0, r_{k+1} \rangle$   
(13)  $\beta_k = \alpha_k / \zeta_k \times \rho_N / \rho_0$   
(14)  $\rho_0 = \rho_N$   
(15)  $p_{k+1} = r_{k+1} + \beta_k (p_k - \zeta_k v_k)$   
(16) enddo

BiCGSTAB 法のアルゴリズム

(1) Compute 
$$r_0 = b - Ax_0$$
,  $\beta := ||r_0||_2$ , and  $v_1 := r_0 / \beta$   
(2) Define The  $(m + 1) \times m$  matrix  $\overline{H}_m = \{h_{ij}\}_{1 \le i \le m+1, 1 \le j \le m}$ , Set  $\overline{H}_m = 0$   
(3) For  $j = 0, 1, 2, \dots, m$  do:  
(4) Compute  $\omega_j := Av_j$   
(5) For  $i = 1, \dots, j$  do:  
(6)  $h_{ij} := (\omega_j, v_j)$   
(7)  $\omega_j := \omega_j - h_{ij}v_j$   
(8) enddo  
(9)  $h_{j+1,j} = ||\omega_j||_2$ . If  $h_{j+1,j} = 0$  Set  $m := j$  and exit  
(10)  $v_{j+1} = \omega_j / h_{j+1,j}$   
(11) enddo  
(12) Compute  $y_m$  the minimizer of  $||\beta e_1 - \overline{H}_m y||_2$  and  $x_m = x_0 + V_m y_m$ 

GMRES 法のアルゴリズム

(1) 
$$x_0, r_0 = b - Ax_0, r_0^{\#}, \beta_{-1} = 0, u_0 = p_0 = r_0^{\#} = r_0$$
  
(2)  $k = 0, 1, 2, \cdots do$   
(3)  $s_k = Au_k$   
(4)  $\alpha_k = \frac{\langle r_0^{\#}, r_k \rangle}{\langle r_0^{\#}, s_k \rangle}$   
(5)  $z_k = p_k - \alpha_k s_k$   
(6)  $q_k = p_k + z_k$   
(7)  $w_k = Aq_k$   
(8)  $x_{k+1} = x_k + \alpha_k q_k$   
(9)  $r_{k+1} = r_k - \alpha_k w_k$   
(10)  $\beta_k = \frac{\langle r_0^{\#}, r_{k+1} \rangle}{\langle r_0^{\#}, r_k \rangle}$   
(11)  $p_{k+1} = r_{k+1} + \beta_k z_k$   
(12)  $u_{k+1} = p_{k+1} + \beta_k (z_k + \beta_k u_k)$   
(13) enddo

CGS 法のアルゴリズム

(1) 
$$r_0 = b - Ax_0, p_0 = r_0$$
  
(2)  $k = 0, 1, 2, \cdots do$   
(3)  $s_k = A^* A p_k$   
(4)  $\alpha_k = \frac{\|r_k\|^2}{\langle p_k, s_k \rangle}$   
(5)  $x_{k+1} = x_k + \alpha_k p_k$   
(6)  $r_{k+1} = r_k - \alpha_k s_k$   
(7)  $\beta_k = \frac{\|r_{k+1}\|^2}{\|r_k\|^2}$   
(8)  $p_{k+1} = r_{k+1} + \beta_k p_k$   
(9) enddo

CGNE 法のアルゴリズム

(1) 
$$r_0 = b - Ax_0, p_0 = r_0$$
  
(2)  $k = 0, 1, 2, \cdots do$   
(3)  $s_k = A^* A M^{-1} p_k$   
(4)  $\alpha_k = \frac{\|r_k\|^2}{\langle p_k, s_k \rangle}$   
(5)  $x_{k+1} = x_k + \alpha_k p_k$   
(6)  $r_{k+1} = r_k - \alpha_k s_k$   
(7)  $\beta_k = \frac{\|r_{k+1}\|^2}{\|r_k\|^2}$   
(8)  $p_{k+1} = r_{k+1} + \beta_k p_k$   
(9) enddo  
(10)  $x = M^{-1} x$ 

図 1 CGNE(A\*A)法のアルゴリズム

(1) 
$$r_0 = b - Ax_0, p_0 = q_0 = A^* r_0$$
  
(2)  $k = 0, 1, 2, \cdots do$   
(3)  $s_k = Ap_k$   
(4)  $\alpha_k = \frac{\|q_k\|^2}{\|s_k\|^2}$   
(5)  $x_{k+1} = x_k + \alpha_k p_k$   
(6)  $r_{k+1} = r_k - \alpha_k s_k$   
(7)  $q_{k+1} = A^* r_k$   
(8)  $\beta_k = \frac{\|q_{k+1}\|^2}{\|q_k\|^2}$   
(9)  $p_{k+1} = q_{k+1} + \beta_k p_k$   
(10) enddo

図 2 CGNR 法のアルゴリズム

## 4. 評価環境および評価項目

評価環境は以下の通りである。

|           | SR1600            | 0 (M1)                      |
|-----------|-------------------|-----------------------------|
| Processor | Processor         | Power7                      |
|           | Clock             | 3.83GHz                     |
|           | L1/L2/L3 cache    | L1:32KB,                    |
|           |                   | L2:256KB,L3:32MB/8cores     |
|           | Theo. Performance | 30.64Gflops                 |
| Node      | Cores             | 32 (4MCM)                   |
|           | Theo. Performance | 980.48Gflops                |
|           | memory            | 128GB                       |
| Software  | OS                | AIX 7.1                     |
|           | compiler          | Hitachi Optimized fortran90 |

また、本測定の評価は演算量(収束までに要する演算量),反復回数,処理時間の3項目を 対象とした。

#### 5. 収束性の評価

本測定では反復終了条件を||Ax-b||/||b||<10-16とし,各反復解法の性能を評価する。

| パラメタ                                                          | 意味                                |
|---------------------------------------------------------------|-----------------------------------|
| A*A <x< th=""><th>A*Aの非ゼロ成分絶対値が X より小さい場合, ゼロで置き換える</th></x<> | A*Aの非ゼロ成分絶対値が X より小さい場合, ゼロで置き換える |
| Thres                                                         | D-ILU における対角成分をゼロと判定する基準値         |
| Ω                                                             | SSORの過緩和係数                        |
| p,t                                                           | ILUT 前処理において、上下三角行列の非ゼロ数上限とゼロ判定閾値 |

前処理行列作成時に使用するパラメタを以下に示す。

clover, dw, ov5d の各行列に対する評価結果は以下の表の通りである。下記の表では, 各列は左から反復解法,前処理法,オーダリング法,各種パラメタ,GMRES 法のリスタ ート周期,リスタート回数,演算量,演算時間を示している。GMRES の restarts の括弧 内にはリスタート周期 M×リスタート回数 restarts の値が入っており,実際の反復回数(行 列ベクトル積の回数)を表している。

行列 clover では CGS 法を除いた全解法で解くことができ,特に BiCGSTAB 法が CGNE 法と比べ 10 倍以上高速である。前処理法を用いると反復回数と演算量は低下するが,演算時間は増加する。一方,行列 dw, ov5d においては、CGS 法を除いた全解法で解くことができるが, CGNE 法が最も演算時間が短い。なお, CGNE 法と CGNR 法はほぼ同等の演算時間であった。この理由としては,今回の対象とした行列全ての条件数が 10 未満と非常に小さいため, CGNR 法による改善が不要であったと考えられる。

また,行列 dw と ov5d で BiCGSTAB 法の反復回数が増加した原因として,実部が負の 固有値が含まれていることが考えられる。このような行列を解く場合は現状の CGNE 法が 最良であろう。

## clover 収束特性:

| colvor    | proceedition | roordoring | parameter         | М   | restarts | 演算量     | total time |
|-----------|--------------|------------|-------------------|-----|----------|---------|------------|
| Solver    | precondition | reordering | parameter         | IVI | (iter)   | (GFLOP) | (sec)      |
|           | none         | none       |                   |     | 150      | 0.79    | 0.23       |
| CONE      | none         | RCM        |                   |     | 150      | 0.79    | 0.23       |
| CONE      | none         | AMD        |                   |     | 150      | 0.79    | 0.23       |
|           | none         | ND         |                   |     | 150      | 0.79    | 0.23       |
|           | none         | none       |                   |     | 150      | 2.20    | 0.06       |
|           | none         | none       | A^*A<1.0E-15      |     | 150      | 2.07    | 0.06       |
| CONL(A A) | D-ILU        | none       | thres=1.0D-08     |     | 64       | 2.80    | 1.05       |
|           | ILU(0)       | none       |                   |     | 25       | 1.09    | 1.25       |
| CGNR      | none         | none       |                   |     | 146      | 0.77    | 0.23       |
| CGS       | none         | none       |                   |     | NG       |         |            |
|           | none         | none       |                   |     | 54       | 0.30    | 0.02       |
|           | Jacobi       | none       |                   |     | 52       | 0.29    | 0.02       |
|           | SSOR         | none       | Ω=1.0             |     | NG       |         |            |
| BICGSTAB  | D-ILU        | none       | thres=1.0D-08     |     | 16       | 0.17    | 0.08       |
|           | ILU(0)       | none       |                   |     | 27       | 0.29    | 0.22       |
|           | ILU(1)       | none       |                   |     | 13       | 0.29    | 0.56       |
|           | ILUT         | none       | (p,t)=(5,1.0D-08) |     | 33       | 0.22    | 0.39       |
|           | none         | none       |                   | 30  | 4(120)   | 0.51    | 0.24       |
|           | Jacobi       | none       |                   | 30  | 4(120)   | 0.52    | 0.24       |
|           | SSOR         | none       | Ω=1.0             | 30  | 2(60)    | 0.42    | 0.22       |
| GMRES     | D-ILU        | none       | thres=1.0D-08     | 30  | 2(60)    | 0.42    | 0.23       |
|           | ILU(0)       | none       |                   | 30  | 2(60)    | 0.41    | 0.35       |
|           | ILU(1)       | none       |                   | 30  | 2(60)    | 0.78    | 1.04       |
|           | ILUT         | none       | (p,t)=(5,1.0D-08) | 30  | 3(90)    | 0.43    | 0.57       |

表中補足 : NG は未収束

## dw 収束特性:

| colvor    | procondition | roordoring par | parameter         | м   | restarts    | 演算量     | total time |
|-----------|--------------|----------------|-------------------|-----|-------------|---------|------------|
| solver    | precondition | r eor der my   | parameter         | IVI | (iter)      | (GFLOP) | (sec)      |
|           | none         | none           |                   |     | 419         | 7.66    | 2.38       |
| CONE      | none         | RCM            |                   |     | 419         | 7.66    | 2.38       |
| CONL      | none         | AMD            |                   |     | 419         | 7.66    | 2.41       |
|           | none         | ND             |                   |     | 419         | 7.66    | 2.53       |
|           | none         | none           |                   |     | 419         | 32.46   | 4.68       |
|           | none         | none           | A^*A<1.0E-15      |     | 419         | 20.94   | 3.10       |
| CONL(A A) | D-ILU        | none           | thres=1.0D-08     |     | NG          |         |            |
|           | ILU(0)       | none           |                   |     | 2,800       | 645.74  | 302.73     |
| CGNR      | none         | none           |                   |     | 436         | 7.97    | 2.49       |
| CGS       | none         | none           |                   |     | NG          |         |            |
|           | none         | none           |                   |     | 14,835      | 291.67  | 27.52      |
|           | Jacobi       | none           |                   |     | 17,309      | 343.71  | 21.29      |
|           | SSOR         | none           | Ω=1.0             |     | NG          |         |            |
| BICGSTAB  | D-ILU        | none           | thres=1.0D-08     |     | 146         | 5.51    | 2.93       |
|           | ILU(0)       | none           |                   |     | 158         | 5.87    | 4.99       |
|           | ILU(1)       | none           |                   |     | 60          | 6.04    | 8.20       |
|           | ILUT         | none           | (p,t)=(5,1.0D-08) |     | 1,362       | 32.40   | 11.76      |
|           | none         | none           |                   | 30  | 668(20,040) | 315.35  | 52.45      |
|           | Jacobi       | none           |                   | 30  | 731(21,930) | 347.32  | 53.02      |
| GMRES     | SSOR         | none           | Ω=1.0             | 30  | 17(510)     | 12.95   | 6.49       |
|           | D-ILU        | none           | thres=1.0D-08     | 30  | 17(510)     | 12.79   | 6.62       |
|           | ILU(0)       | none           |                   | 30  | 17(510)     | 12.64   | 9.23       |
|           | ILU(1)       | none           |                   | 30  | 6(180)      | 10.37   | 12.03      |
|           | ILUT         | none           | (p,t)=(5,1.0D-08) | 30  | 57(1,710)   | 30.56   | 10.60      |

表中補足 : NG は未収束

### 

| solver    | procondition | roordoring parameter | М                 | restarts | 演算量       | total time |          |
|-----------|--------------|----------------------|-------------------|----------|-----------|------------|----------|
|           | precondition | reordering           | parameter         | IVI      | (iter)    | (GFLOP)    | (sec)    |
|           | none         | none                 |                   |          | 155       | 68.58      | 28.01    |
| CONE      | none         | RCM                  |                   |          | 155       | 68.58      | 27.23    |
| CONL      | none         | AMD                  |                   |          | 155       | 68.58      | 27.20    |
|           | none         | ND                   |                   |          | 155       | 68.58      | 26.64    |
|           | none         | none                 |                   |          | 155       | 168.09     | 24.49    |
|           | none         | none                 | A^*A<1.0E-15      |          | 155       | 168.09     | 23.91    |
| CONE(A A) | D-ILU        | none                 | thres=1.0D-08     |          | 99        | 322.02     | 1,016.75 |
|           | ILU(0)       | none                 |                   |          | 39        | 126.84     | 2,606.39 |
| CGNR      | none         | none                 |                   |          | 150       | 66.37      | 26.59    |
| CGS       | none         | none                 |                   |          | NG        |            |          |
|           | none         | none                 |                   |          | 1,312     | 581.51     | 77.81    |
|           | Jacobi       | none                 |                   |          | 1,203     | 533.33     | 71.92    |
| DICCSTAR  | SSOR         | none                 | Ω=1.0             |          | NG        |            |          |
| DICOSTAD  | D-ILU        | none                 | thres=1.0D-08     |          | 98        | 86.78      | 75.84    |
|           | ILU(0)       | none                 |                   |          | 54        | 47.80      | 186.32   |
|           | ILUT         | none                 | (p,t)=(5,1.0D-08) |          | 497       | 221.44     | 85.86    |
|           | none         | none                 |                   | 85       | 20(1,785) | 396.86     | 84.67    |
|           | Jacobi       | none                 |                   | 85       | 22(1,870) | 436.65     | 89.56    |
| CMDES     | SSOR         | none                 | Ω=1.0             | 45       | 9(405)    | 349.90     | 73.44    |
| GIVIRES   | D-ILU        | none                 | thres=1.0D-08     | 40       | 9(360)    | 349.77     | 106.46   |
|           | ILU(0)       | none                 |                   | 55       | 3(165)    | 116.55     | 158.28   |
|           | ILUT         | none                 | (p,t)=(5,1.0D-08) | 60       | 24(1,440) | 478.63     | 119.49   |

表中補足 : NG は未収束

## 6. 残差履歴

以下, BiCGSTAB と GMRES の残差履歴を示します。これらの履歴は, (1) 反復回数-残差, (2) 演算量-残差の 2 つの履歴を図示したものである。



BiCGSTAB: clover (反復回数 vs. 残差)



図 BiCGSTAB: clover (演算量 vs. 残差)



GMRES: clover (反復回数 vs. 残差)



GMRES: clover (演算量 vs. 残差)



BiCGSTAB:dw (反復回数 vs. 残差)



BiCGSTAB:dw(演算量 vs. 残差)



GMRES:dw(反復回数 vs. 残差)



GMRES:dw(演算量 vs. 残差)



BiCGSTAB: ov5d (反復回数 vs. 残差)



BiCGSTAB: ov5d (演算量 vs. 残差)



GMRES: ov5d (反復回数 vs. 残差)



GMRES: ov5d (演算量 vs. 残差)

### 7. 並列性に関する補足

本報告で評価した各反復解法では非対称行列-ベクトル積,ベクトルの内積,ベクトルの 積和などが主たる演算パーツになっており,ベクトルのブロック分割により並列化が可能 である。特に行列-ベクトル積は各行毎の並列性を有しており、行方向の分割によって完全 並列化が可能となる。

一方、前処理行列では Jacobi 前処理を除き,行単位の並列性は有していない。特に ILU 系統の前処理行列による前進消去・後退代入演算は、収束性を改善できる反面,演算の逐 次性が強く収束性劣化との兼ね合いで並列化を検討する必要がある。

超並列環境における ILU 系前処理の並列化技法については下記参考文献に詳しい。

E. de Sturler : Incomplete Block LU Preconditioners on Slightly Overlapping Subdomains for a Massively Parallel Computer : Applied Numerical Mathematics Volume 19, Issues 1–2, November 1995, Pages 129–146 Special Issue on Massively Parallel Computing and Applications